Journal of Organometallic Chemistry, 346 (1988) C58-C60 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

Palladium-catalyzed synthesis of silyl-substituted enynes

Mitsuo Ishikawa *, Joji Ohshita,

Department of Applied Chemistry, Faculty of Engineering, Hiroshima University, Higashi-Hiroshima 724 (Japan)

Yoshihiko Ito,

Department of Synthetic Chemistry, Faculty of Engineering, Kyoto University, Kyoto 606 (Japan)

and Akio Minato

Kyoto Pharmaceutical University, Yamashina, Kyoto 607 (Japan) (Received February 5th, 1988)

Abstract

Treatment of 1-ethynyl-1-phenyltetramethyldisilane, ethynyldimethylphenylsilane and ethynylmethyldiphenylsilane with tetrakis(triphenylphosphine)palladium(0) at 100° C gave the corresponding enyne by head-to-head coupling, as the single regioisomer in high yield. Ethynyl-substituted mono- and di-silanes that have no phenyl group on the ethynyl silicon atom, however, afforded the enynes only in low yields.

The C-H bond activation of 1-alkynes with a transition metal catalyst offers a convenient route to enynes which can be used as precursors for the synthesis of natural products. Many papers on the enyne synthesis by the direct coupling of 1-alkynes in the presence of a transition metal catalyst have been published to date [1-5]. Most of the papers, however, are concerned with head-to-tail coupling [2-5]. Up to now, no convenient route for head-to-head dimerization has been known, although the rhodium-catalyzed reaction of 1-alkynes bearing a 3-hydroxy group affords the products derived from head-to-head coupling in high yields [2]. In this paper, we report on the palladium-catalyzed dimerization of ethynyl-substituted mono- and di-silanes to give the enyne by head-to-head coupling, as a single regioisomer in high yields.

When a mixture of 1-ethynyl-1-phenyltetramethyldisilane (I) [6] and a catalytic amount of tetrakis(triphenylphosphine)palladium(0) (7 mol%) was heated in benzene at 100 °C for 20 h in a sealed glass tube, (E)-1,4-bis(phenyltetramethyldisilanyl)but-3-ene-1-yne (II) was obtained in 65% yield as the sole volatile product. No regio- and stereo-isomers were detected in the reaction mixture by either VPC or spectrometric analysis. The structure of the product II was confirmed by IR, mass and ¹H and ¹³C NMR spectrometry *. The proton coupling constant (J 20 Hz) at δ 6.02 and 6.66 ppm, due to olefinic protons for II clearly indicates that II must have the (E)-configuration. The IR spectrum of II shows strong absorptions at 2150 cm⁻¹, attributable to the stretching vibration of a carbon-carbon triple bond.

Ethynyl-substituted phenylmonosilanes can also be used as convenient precursors for enyne synthesis. Thus, when ethynyldimethylphenylsilane (III) is heated in the presence of a catalytic amount of tetrakis(triphenylphosphine)palladium(0) at $100 \degree C$ for 20 h, (E)-1,4-bis(dimethylphenylsilyl)but-3-ene-1-yne (IV) ** can be isolated in 50% yield as the sole volatile product. Similarly, reaction of ethynylmethyldiphenylsilane (V) with a catalytic amount of palladium complex also gave VI but in 62% yield. In both cases, no other volatile products were detected by either VPC or spectroscopic analysis. Products, II, IV and VI were readily isolated by LPC.

Scheme 1 shows a possible mechanism. The mechanism involves the insertion of a palladium(0) complex into an acetylenic C-H bond leading to a palladium(II) intermediate, followed by regiospecific addition of the palladium hydride across the triple bond of the coordinated ethynylsilane and finally reductive elimination takes place.

ы

Scheme 1

$$R-C = CH + Pd(PPh_3)_4 \rightarrow R-C = C-Pd(PPh_3)_2 \xrightarrow{RC = CH} H$$

 $(I,R = Me_3SiSi(Ph)Me,$ III,R = Me₂PhSi, V,R = MePh₂Si)

 $\begin{array}{c} R-C \equiv C-Pd-H \\ H-C \equiv C-R \end{array} \xrightarrow{R-C} = C \\ H \end{array} \xrightarrow{R-C} = C \\ H \end{array}$

 $(II, R = Me_3SiSi(Ph)Me,$ $IV, R = Me_2PhSi,$ $VI, R = MePh_2Si)$

Compound II: ¹H NMR 0.11 (18H, s, Me₃Si), 0.31 (3H, s, MeSi), 0.35 (3H, s, MeSi), 6.02 (1H, d, J 20 Hz, HC=C), 6.66 (1H, d, J 20 Hz, HC=C), 7.17-7.68 (10H, m, phenyl ring protons); ¹³C NMR -5.9, -4.1, -2.3, -1.9 (C-Si), 91.7, 109.2 (C=C), 125.1 (C=C), 128.0 (2C), 128.8 (2C), 134.1, 134.4, 135.9, 136.4 (phenyl ring carbons), 143.6 (C=C); IR: ν(C=C) 2150 cm⁻¹; mass m/e 436 (M⁺).

^{**} Compound IV: ¹H NMR 0.38 (6H, s, Me₂Si), 0.43 (6H, s, Me₂Si), 5.90 (1H, d, J 19 Hz, HC=C), 6.59 (1H, d, J 19 Hz, HC=C), 7.21-7.64 (10H, m, phenyl ring protons); ¹³C NMR -0.30, -0.9 (C-Si), 93.4, 106.7 (C=C), 125.0 (C=C), 127.7, 127.9, 129.3, 129.4, 133.7, 133.9, 136.9, 137.1 (phenyl ring carbons), 145.1 (C=C); IR: ν (C=C) 2160 cm⁻¹; mass m/e 320 (M^+). Compound VI: ¹H NMR 0.63 (3H, s, MeSi), 0.69 (3H, s, MeSi), 5.93 (1H, d, J 19 Hz, HC=C), 6.75 (1H, d, J 19 Hz, HC=C), 6.96-7.66 (20H, m, phenyl ring protons); ¹³C NMR -4.1, -2.1 (C-Si), 92.3, 108.0 (C=C), 126.8 (C=C), 127.9 (2C), 129.7 (2C), 133.9, 134.5, 134.8, 135.1 (phenyl ring carbons), 143.3 (C=C); IR: ν (C=C) 2160 cm⁻¹; mass m/e 444 (M^+).

In the present system, the introduction of at least one phenyl group to the ethynylsilicon atom is very important for obtaining the enynes in high yields. In fact, ethynyl-mono- and -di-silanes that have no phenyl group on the ethynylsilicon atom gave the enynes, only in low yields. For example, ethynyltrimethylsilane and ethynylpentamethyldisilane underwent head-to-head coupling under the same conditions, to give the enynes in 3 and 22% yields, respectively. The formation of large amounts of unidentified non-volatile substances was observed in these reactions.

Acknowledgements. This research was supported in part by a Grant-in-Aid for Scientific Research on Priority Areas (Advanced Molecular Conversion) to which the authors' thanks are due.

References

- 1 H. Singer and G. Wilkinson, J. Chem. Soc. A, (1968) 849.
- 2 L. Carlton and G. Read, J. Chem. Soc., Perkin I, (1978) 1631.
- 3 G. Giacomelli, F. Marcacci, A.M. Caporusso, and L. Lardicci, Tetrahedron Lett., (1979) 3217.
- 4 M. Akita, H. Yasuda, and A. Nakamura, Bull. Chem. Soc. Japan, 57 (1984) 480.
- 5 B.M. Trost, C. Chan, and G. Ruther, J. Am. Chem. Soc., 109 (1987) 3486.
- 6 M. Ishikawa, H. Sugisawa, K. Yamamoto, and M. Kumada, J. Organomet. Chem., 179 (1979) 377.